Trajectory-Based Short-Sighted Probabilistic Planning
نویسندگان
چکیده
Probabilistic planning captures the uncertainty of plan execution by probabilistically modeling the effects of actions in the environment, and therefore the probability of reaching different states from a given state and action. In order to compute a solution for a probabilistic planning problem, planners need to manage the uncertainty associated with the different paths from the initial state to a goal state. Several approaches to manage uncertainty were proposed, e.g., consider all paths at once, perform determinization of actions, and sampling. In this paper, we introduce trajectory-based short-sighted Stochastic Shortest Path Problems (SSPs), a novel approach to manage uncertainty for probabilistic planning problems in which states reachable with low probability are substituted by artificial goals that heuristically estimate their cost to reach a goal state. We also extend the theoretical results of Short-Sighted Probabilistic Planner (SSiPP) [1] by proving that SSiPP always finishes and is asymptotically optimal under sufficient conditions on the structure of short-sighted SSPs. We empirically compare SSiPP using trajectorybased short-sighted SSPs with the winners of the previous probabilistic planning competitions and other state-of-the-art planners in the triangle tireworld problems. Trajectory-based SSiPP outperforms all the competitors and is the only planner able to scale up to problem number 60, a problem in which the optimal solution contains approximately 10 states.
منابع مشابه
Short-Sighted Stochastic Shortest Path Problems
Algorithms to solve probabilistic planning problems can be classified in probabilistic planners and replanners. Probabilistic planners invest significant computational effort to generate a closed policy, i.e., a mapping function from every state to an action, and these solutions never “fail” if the problem correctly models the environment. Alternatively, replanners computes a partial policy, i....
متن کاملOn-Road Trajectory Planning for General Autonomous Driving with Enhanced Tunability
In order to achieve smooth autonomous driving in real-life urban and highway environments, a motion planner must generate trajectories that are locally smooth and responsive (reactive), and at the same time, far-sighted and intelligent (deliberative). Prior approaches achieved both planning qualities for full-speed-range operations at a high computational cost. Moreover, the planning formulatio...
متن کاملDepth-based short-sighted stochastic shortest path problems
Stochastic Shortest Path Problems (SSPs) are a common representation for probabilistic planning problems. Two approaches can be used to solve SSPs: (i) consider all probabilistically reachable states and (ii) plan only for a subset of these reachable states. Closed policies, the solutions obtained in the former approach, require significant computational effort, and they do not require replanni...
متن کاملFast and Bounded Probabilistic Collision Detection in Dynamic Environments for High-DOF Trajectory Planning
We present a novel approach to perform probabilistic collision detection between a high-DOF robot and high-DOF obstacles in dynamic, uncertain environments. In dynamic environments with a highDOF robot and moving obstacles, our approach efficiently computes accurate collision probability between the robot and obstacles with upper error bounds. Furthermore, we describe a prediction algorithm for...
متن کاملA Probabilistic Algorithm for Mode Based Motion Planning of Agile Unmanned Air Vehicles in Complex Environments
In this work, we consider the design of a probabilistic trajectory planner for a highly maneuverable unmanned air vehicle flying in a dense and complex city-like environment. Our design hinges on the decomposition of the problem into a) flight controls of fundamental agile-maneuvering flight modes and b) trajectory planning using these controlled flight modes from which almost any aggressive ma...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012